Integrated Systems

FOR NON-DESTRUCTIVE TESTING

HIGH-PERFORMANCE NDT SOLUTIONS

INSPECTIONS
Welds
Surface & Volumetric

MEASUREMENTS
Thickness
Material Properties

Innerspec
www.innerspec.com
ULTRASONIC TESTING (UT)

UT refers to a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object tested. Ultrasound in frequencies ranging from 20kHz to 50MHz are transmitted into materials to detect internal flaws or to characterize materials. Ultrasound in industrial NDT can be generated with piezoelectric transducers, EMAT, or Lasers.

ELECTRO MAGNETIC ACOUSTIC TRANSDUCER (EMAT)

EMAT is an UT technique that uses electromagnetic induction to generate ultrasound in the part inspected instead of the transducer. EMAT works on most metals, including steel and aluminum, and has important advantages over other UT techniques:

• Dry inspection. EMAT does not require couplant for transmitting sound, which makes it very well suited for inspection of very hot and cold parts, and integration in automated environments.
• Imperviousness to surface conditions. EMAT can inspect through coatings and is not affected by pollutants, oxidation, or roughness.
• Easier sensor deployment. Not having wedges or couplant, the angle of the sensor does not affect the direction of propagation. This makes EMAT transducers easier to control and deploy.
• Unique wave modes. EMAT is very efficient for generating guided waves, which are used in many industrial applications, and is the only practical means for generating shear waves with horizontal polarization (SH waves).

ULTRASONIC TESTING (UT) WITH PIEZOELECTRIC TRANSDUCERS

UT with piezoelectric transducers is the most common way of generating ultrasound. The advantages of piezoelectric transducers include:

• Applicable to most materials. Including metals, plastics, composites, and ceramics.
• Highly efficient. Unlike EMAT, they can be used with low-power instruments and provide good signal-to-noise even with very small transducers.
• High-resolution and sizing capabilities. Techniques such as Phased Array (PAUT) can increase signal-to-noise, improve inspection speed, size defects, and create accurate images of objects.

EDDY CURRENT (EC)

In EC an alternating current flows through a wire coil and generates an oscillating magnetic field. When the coil approaches a conductive material, currents opposed to the ones in the coil are induced in the material. Variations in electrical conductivity and magnetic permeability of the test object and/or the presence of defects causes changes in phase and amplitude of the induced eddy currents that can be detected by measuring impedance changes in the coil. The advantages of EC include:

• Non-contact technique.
• Highly sensitive to surface defects.
• Capable of detecting defects in any orientation.
• Permit high lift-off using Pulsed Eddy Current (PEC) techniques.

LASER MEASUREMENT (LM) AND DIGITAL IMAGING (DI)

LM uses lasers for extremely precise measurement of parts and components using triangulation. An LM system includes a CMOS/CCD or PSD detector and a solid-state laser light source. The laser beam is projected on the target under measurement, to detect changes in position as small as 1 micron can be detected and recorded. DI systems rely on industrial high-resolution cameras to take pictures of the part during the production process. Advanced software permits detecting characteristics that are not measurable with LM. The advantages of LM and DI for our applications include:

• Non-contact technique.
• Provides measurements that are not available with other NDT techniques.
• Complements EMAT, UT, and EC to further identify defects.

Innerspec pioneered EMAT technology in the mid-90s and has since added Phased Array UT, Eddy Current, Laser Measurement, and Digital Imaging to its growing portfolio of NDT techniques.
Applications

With hundreds of custom systems installed worldwide, Innerspec is a leading designer of advanced NDT systems for integration in production environments.

WELD INSPECTION

Thin-Welds (<10mm) with EMAT. Guided waves are the technique of choice for inspections of thin welds because of their high sensitivity and tolerance for the variability encountered in production. Innerspec has fielded guided wave weld inspection systems for tailor welded blanks (TWB), longitudinal and girth weld inspection in tubes, forged and mash welds in coil joining, and lap welds in automotive production.

Thick-Welds (>10mm) with EMAT and PAUT. EMAT provides the ability to inspect materials at high temperature immediately after welding. This technique is used on ERW tube inspections and similar applications to provide near real-time results on the quality of the weld, improve welder uptime, and reduce waste. For final quality control, Innerspec uses PAUT and EMAT for weld inspection depending on the application and customer requirements.

Multi-Pass Welds (Inspections While Welding) with EMAT. Using a proprietary technique, Innerspec has developed a system to provide in-process inspection of welds between passes. The inspection is performed on the last layer deposited (3-5mm), and can be performed during welding.

Austenitic Welds with EMAT. The ability to generate Shear Horizontal wave modes makes EMAT the best alternative for the inspection of austenitic and dissimilar metal welds.

LARGE VOLUMETRIC INSPECTION

Plate and Ingot Inspection with EMAT. EMAT is used for low-resolution inspection of steel plates and aluminum ingots.

High-Resolution Volumetric Inspection with PAUT. PAUT is used for detection of small defects in large forgings and any volumetric inspection that requires detection of very small defects.

Roll Inspection. Our patented UT and magnetic technique permits detection of surface and internal defects on mill rolls.

THICKNESS MEASUREMENT

Thickness Measurement with EMAT and DCUT. Provide micrometer accuracy (12µm) in harsh environments, and at extreme temperatures on rough and coated/dirty materials. Dry-Coupled UT (DCUT) is used for UT measurement without couplant on non-metallic or highly-resistive materials.

OTHER MEASUREMENTS

Stress Measurement with EMAT. Used for measurement of internal stress on plates, train wheels, and other thick components.

Bolt-Load Measurement with EMAT. Proprietary dual-wave technique for measurement of load in bolts.

Conductivity Measurement with EC. Provides fast scanning and measurement of top and bottom conductivity in aluminum plates.

New, custom solutions are added frequently. Consult our website for up-to-date information.

SURFACE & THIN VOLUMETRIC INSPECTION

Thin Laminated Strip with EMAT. Guided waves are used for detection of internal and surface defects in laminated products such as coin stock and aluminum/steel bushings.

Surface Inspections with EMAT and EC. EMAT-generated surface waves are used for detection of defects covering large areas with a limited number of sensors. Current EMAT applications include surface inspection of plates, ingots, billets and tubes. EC systems are used for surface inspection of rod and wire during production and in final quality control.
Portable Solutions

Innerspec Technologies, Inc.
Global Headquarters
2940 Perrowville Rd.
Forest, VA 24551, USA
Tel. +1-434-948-1301

Our advanced in-service applications include:
• High temperature thickness measurement (up to 650 ºC)
• Corrosion detection with Medium-Range and Long-Range guided waves (MRUT & LRUT).
• Corrosion mapping.
• Residual stress measurement.
• Weld inspection.
• Surface inspection.
• Boiler inspection.

In addition to Integrated Systems, Innerspec offers portable instruments and custom sensors for in-service applications.

Visit our website for the newest instruments, and to download our EMAT and DCUT catalogs of standard sensors and accessories.

www.innerspec.com
sales@innerspec.com